Fully Automatic Lung Segmentation and Rib Suppression Methods to Improve Nodule Detection in Chest Radiographs

نویسندگان

  • Elaheh Soleymanpour
  • Hamid Reza Pourreza
  • Emad ansaripour
  • Mehri Sadooghi Yazdi
چکیده

Computer-aided Diagnosis (CAD) systems can assist radiologists in several diagnostic tasks. Lung segmentation is one of the mandatory steps for initial detection of lung cancer in Posterior-Anterior chest radiographs. On the other hand, many CAD schemes in projection chest radiography may benefit from the suppression of the bony structures that overlay the lung fields, e.g. ribs. The original images are enhanced by an adaptive contrast equalization and non-linear filtering. Then an initial estimation of lung area is obtained based on morphological operations and then it is improved by growing this region to find the accurate final contour, then for rib suppression, we use oriented spatial Gabor filter. The proposed method was tested on a publicly available database of 247 chest radiographs. Results show that this method outperformed greatly with accuracy of 96.25% for lung segmentation, also we will show improving the conspicuity of lung nodules by rib suppression with local nodule contrast measures. Because there is no additional radiation exposure or specialized equipment required, it could also be applied to bedside portable chest x-rays. In addition to simplicity of these fully automatic methods, lung segmentation and rib suppression algorithms are performed accurately with low computation time and robustness to noise because of the suitable enhancement procedure.

منابع مشابه

طراحی سیستم کمک تشخیص کامپیوتری نوین به منظور شناسایی ندول‌های ریوی در تصاویر سی‌تی ‌اسکن

Background: Lung diseases and lung cancer are among the most dangerous diseases with high mortality in both men and women. Lung nodules are abnormal pulmonary masses and are among major lung symptoms. A Computer Aided Diagnosis (CAD) system may play an important role in accurate and early detection of lung nodules. This article presents a new CAD system for lung nodule detection from chest comp...

متن کامل

Rib Suppression for Enhancing Frontal Chest Radiographs Using Independent Component Analysis

Chest radiographs play an important role in the diagnosis of lung cancer. Detection of pulmonary nodules in chest radiographs forms the basis of early detection. Due to its sparse bone structure and overlapping of the nodule with ribs and clavicles the nodule is hard to detect in conventional chest radiographs. We present a technique based on Independent Component Analysis (ICA) for the suppres...

متن کامل

A nonparametric-based rib suppression method for chest radiographs

This paper presents an automated and comprehensive system for eliminating rib shadows in chest radiographs, which integrates lung field identification, rib segmentation, rib intensity estimation, and suppression. We designed a region of interest (ROI)-based method to estimate a suitable initial lung boundary for active shape model (ASM) deformation by determining the translation and scaling par...

متن کامل

Performance of radiologists in detection of small pulmonary nodules on chest radiographs: effect of rib suppression with a massive-training artificial neural network.

OBJECTIVE A massive-training artificial neural network is a nonlinear pattern recognition tool used to suppress rib opacity on chest radiographs while soft-tissue contrast is maintained. We investigated the effect of rib suppression with a massive-training artificial neural network on the performance of radiologists in the detection of pulmonary nodules on chest radiographs. MATERIALS AND MET...

متن کامل

Automatic Lung Nodule Detection from Chest CT Data Using Geometrical Features: Initial Results

In this paper, a complete system for automatic lung nodule detection from Chest CT data is proposed. The proposed system includes the methods of lung segmentation and nodule detection from CT data. The algorithm for lung segmentation consists of surrounding air voxel removal, body fat/tissue identification, trachea detection, and pulmonary vessels segmentation. The nodule detection algorithm co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2011